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Abstract
Magnetization study of a single crystal of Nd2Fe14Si3 (with the rhombohedral Th2Zn17-type
structure) reveals that the compound is a ferromagnet with a spontaneous magnetic moment of
32.3μB per formula unit (at T = 2 K) and a Curie temperature equal to 495 K. The
easy-magnetization direction lies close to the b-axis, tilting slightly towards the c-axis. (The
b-axis [120] is not a high-symmetry direction in the crystallographic class D3d.) The observed
strong magnetic anisotropy is attributed almost entirely to the Nd sublattice, as concluded from
comparison with a Y2Fe14Si3 single crystal. A magnetic field applied along the c-axis induces a
first-order spin reorientation transition at BFOMP = 20 T. In the process of magnetization the Nd
and Fe sublattices behave as essentially non-collinear. This is manifest particularly in the
downward curvature of the first (pre-FOMP) stage of the magnetization curve. It is proposed to
regard this curvature as a validity criterion for the single-sublattice approximation.

1. Introduction

The compound Nd2Fe14Si3, a Si solid solution in the binary
intermetallic Nd2Fe17, belongs to a wide class of rare-earth
(R) compounds with a high content of 3d transition metal (T).
The R–T intermetallics combine localized magnetism of the R
sublattice with itinerant magnetism of the T sublattice [1–3].
This combination makes them very interesting subjects from
a scientific point of view. The large magnetic anisotropy
and magnetostriction, originating from the R sublattice, in
combination with a high spontaneous magnetic moment Ms

and Curie temperature TC, originating from the 3d sublattice,
has led to the discovery of several excellent materials for
application as permanent magnets and magnetostrictors [4–6].

7 Author to whom any correspondence should be addressed.
8 Present address: Institute for Materials Research, Tohoku University,
Katahira 2-1-1, Sendai 980-8578, Japan.

R2Fe17 is one of widest groups of the R–T intermetallics.
The crystal structure of R2Fe17 consists of one (the
rhombohedral Th2Zn17-type in the case of light R) or two
(the hexagonal Th2Ni17-type for heavy R) non-equivalent
positions for the R atoms and four positions for the Fe
atoms. The compounds are well known for their peculiar
magnetic behavior. They have a very short Fe–Fe distance
dFeFe between the Fe atoms in one of positions (so-called
‘dumbbells’), 239 pm, and several other distances with dFeFe

about 244 pm, which are also shorter than the dFeFe about
250 pm in bcc Fe. The short Fe–Fe distances in the
‘dumbbells’ are expected to give rise to negative exchange
interactions. The total Fe–Fe exchange interaction is positive,
however, the existence of these competitive interactions leads
to remarkably low TC values for such a high content of Fe. It is
interesting that any substitutions in the Fe sublattices, magnetic
or non-magnetic, immediately destroy this delicate balance
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of exchange interactions, and TC increases rapidly. R2Fe17

compounds are also known to possess a large spontaneous
magnetostriction. This leads, in combination with the
relatively low TC, to invar behavior in a wide temperature
range [1].

Since R2Fe17 compounds exhibit large magnetic aniso-
tropy, single crystals are strongly desirable for quantitative
studies of their magnetism. All R2Fe17 compounds with heavy
R (except Yb) have been prepared in single-crystalline form
and have been studied by many groups [7–9]. As regards
the light R compounds, preparation of single crystals looks
very difficult due to the complicated phase diagram. Single
crystals have been obtained only for Nd2Fe17. The single
crystal was prepared by the flux method and the magnetization
was measured in fields up to 6 T [10]. The compound
is a ferromagnet with Ms = 39μB per formula unit and
TC = 348 K. The magnetic moments are located in the
basal plane, the c-axis is the hardest magnetization axis.
This easy-plane anisotropy is very large, the anisotropy field
Ba being estimated to exceed 20 T. Very large anisotropy
was also observed within the basal plane, with the [120]
axis (the b-axis in the orthorhombic coordinates) as the
easiest magnetization direction. Later on, the field range
of magnetization measurements was extended to 22 T and
two field-induced transitions at 10 and 18 T, interpreted as
FOMPs (first-order magnetization processes), were observed
in the magnetization along the c-axis [11]. However, the
results obtained on this crystal give rise to some questions.
The curve measured along the (easiest) [120] axis (b-axis)
exhibits a rather high differential magnetization even at the
highest field, which may be due to a less-perfect quality of
the crystal. Also, the magnetization measured along the [100]
axis (a-axis) does not approach the b-axis curve in high fields.
This would correspond to infinitely large anisotropy within
the basal plane, which is not realistic. Earlier calculations
(open circles in figure 18(a) of [11]) did not reproduce the
second magnetization jump. A second magnetization jump
observed under similar conditions in Tb2Fe17 was reliably
attributed to a secondary phase [12]. In view of these
unanswered questions, another study on a new crystal is
desirable. However, our attempts to prepare a Nd2Fe17 single
crystal by the Czochralski method in a tri-arc furnace have
failed, although this method is rather successful in the case
of the heavy R compounds. An attempt to grow Nd2Fe17 by
the Bridgman method in a Al2O3 crucible was successful but,
unfortunately the crystal was contaminated by Al, having the
composition Nd2Fe16.3Al0.7 [13]. The results of magnetization
measurements on this crystal resemble those reported for
Nd2Fe17, including a two-step transition (11.5 and 15 T) along
the hard c-axis but, in contrast, a spontaneous component of
the magnetic moment was observed along this direction that
may also point to a less-perfect quality of the crystal. It is
known that Si can be substituted for Fe in R2Fe17, in amounts
of up to x = 3 according to the formula R2Fe17−xSix . A study
of polycrystalline R2Fe14Si3 compounds [14] has revealed a
strong modification of the exchange interactions compared to
R2Fe17. In Nd2Fe14Si3, TC is reported to be 492 K [14, 15]
(compared with 348 K for Nd2Fe17), whereas Ms decreases.

The effect of Si substitution on the magnetic anisotropy of
Nd2Fe17 is not known at all because of the lack of any
single crystals. We have attempted to grow single crystals of
Nd2Fe17−xSix solid solutions by the Czochralski method. This
turned out to be impossible for x up to 2.5, but the composition
Nd2Fe14Si3 was found to melt congruently and a crystal could
successfully be grown.

In this work, we present the field and temperature
dependences of the magnetization measured along the
principal axes of the grown Nd2Fe14Si3 single crystal. Also,
the crystals of R2Fe14Si3, with Y and Ce instead of Nd, were
grown and studied to determine the contribution from the Fe
sublattice to the magnetic properties.

2. Experimental details

Single crystals of Nd2Fe14Si3, Y2Fe14Si3 and Ce2Fe14Si3 were
prepared by arc melting the pure elements (99.9% Nd, Y or Ce,
99.98% Fe and 99.999% silicon) in a tri-arc furnace on a water-
cooled copper crucible under a protective argon atmosphere.
The alloy buttons were turned several times and then, in order
to ensure good homogeneity, kept in the molten state for about
1 h before pulling crystals. The single crystals were grown
from these molten buttons by the Czochralski method using a
tungsten rod as a seed with 10 mm h−1 pulling speed.

The x-ray Laue patterns show that the quality of the
crystals is good. The misorientation of subgrains does
not exceed 1◦. Phase purity and lattice parameters were
determined by standard x-ray diffractometry with Cu Kα

radiation on powders prepared from the single crystals.
Nd2Fe14Si3 crystallizes in the rhombohedral crystal structure
of the Th2Zn17 type (space group R3̄m) with lattice parameters
a = 8.519 Å, c = 12.470 Å. Ce2Fe14Si3 has the same
crystal structure with a = 8.450 Å, c = 12.443 Å. Y2Fe14Si3
has the hexagonal structure of the Th2Ni17 type (space group
P63/mmc) with a = 8.419 Å, c = 8.284 Å.

The magnetization curves were measured at 2–600 K
along the principal axes of the single crystals using a PPMS-
14 magnetometer (Quantum Design) in fields up to 14 T.
The magnetization curves presented below are corrected for
the demagnetization field. At 4.2 K, the magnetization
measurements of Nd2Fe14Si3 were extended up to 52 T using
a non-destructive pulsed-field magnet with a pulse duration
of 40 ms installed at the Center for Quantum Science and
Technology under Extreme Conditions (KYOKUGEN) at
Osaka University. The magnetization was detected by an
induction method with a standard pick-up coil system.

3. Results and discussion

3.1. Fe sublattice

Figure 1 shows the magnetization curves of a Y2Fe14Si3
single crystal at different temperatures. A moderate magnetic
anisotropy of the easy-plane type is seen from comparison of
the curves at 5 K along the a and c axes. The spontaneous
magnetization, Ms (5 K), equals 26μB/f.u., which corresponds
to an average Fe magnetic moment MFe = 1.86μB. This is
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Figure 1. Magnetic isotherms in fields applied along the c-axis of a
Y2Fe14Si3 single crystal. For T = 5 K, the curve along the a-axis is
shown as well. The inset shows the temperature dependence of K1,
the dashed line representing a fit to K1(T ) = K1(0)[Ms(T )/Ms(0)]3.

significantly less than the Fe moment (2.05μB) in the pure
Y2Fe17 [16], so that the role of Si cannot be reduced to a mere
dilution of the Fe sublattice.

The temperature dependences of Ms for Y2Fe14Si3 and
Nd2Fe14Si3, obtained from the magnetization isotherms along
the easy axis, are presented in figure 2. As shown by the dashed
line in figure 2, Ms(T ) of Y2Fe14Si3 is well described by the
formula [17]:

Ms(T ) = Ms(0)

[
1 − 0.8

(
T

TC

)3/2

− 0.2

(
T

TC

)5/2
]1/3

(1)

with Ms(0) = 26.1μB/f.u. and TC = 483 K. Therefore, to
a good approximation Y2Fe14Si3 can be regarded as a single-
sublattice ferromagnet and one can consider it without taking
into account four individual Fe sublattices.

The anisotropy field Ba in Y2Fe14Si3 is equal to 2 T, which
is two times smaller than in Y2Fe17. The good linearity of
the hard-direction magnetization curve indicates that the first
anisotropy constant K1 is sufficient to describe the magnetic
anisotropy. We refer to the standard expression for the
anisotropy energy of hexagonal crystals,

Ea = K1 sin2 θ +K2 sin4 θ +K3 sin6 θ +K ′′
3 sin6 θ cos 6ϕ (2)

where θ and ϕ are the spherical angles defining the direction of
the magnetization vector with respect to the crystallographic
axes. A Sucksmith–Thompson analysis [18] of the c-axis
magnetization curve provides K2 = 0.038 MJ m−3, which can
be neglected in comparison with the absolute value of K1 =
−0.93 MJ m−3. The sixth-order anisotropy constants K3 and
K ′′

3 should be all the more negligible. In particular, K ′′
3 is zero

Figure 2. Temperature dependence of Ms for Y2Fe14Si3 and
Nd2Fe14Si3, as well as the magnetic moment of the Nd sublattice.
The dashed line represents the fit of Ms(T ) for Y2Fe14Si3 to
equation (1).

since there is no observable anisotropy within the basal plane,
i.e. no difference between the magnetization curves along the
[100] (a) and [120] (b) axes.

As can be seen in the inset of figure 1, the temperature
dependence of K1 nicely obeys the relation

K1(T )

K1(0)
=

[
Ms(T )

Ms(0)

]3

(3)

as follows from the single-ion model in the special case of
|K1| � |K2|.

Since Y2Fe14Si3 and Nd2Fe14Si3 have different structural
modifications, it was necessary to check to what extent such a
difference affects the magnetic properties of the Fe sublattice.
To this end, we measured magnetization curves of a single
crystal of Ce2Fe14Si3, which has the same rhombohedral
structure as Nd2Fe14Si3. Ce is known to be tetravalent
and therefore non-magnetic in Fe-rich intermetallics [1].
No qualitative difference was found between the magnetic
properties of Y2Fe14Si3 and Ce2Fe14Si3. In particular,
Ce2Fe14Si3 exhibits the same planar magnetic anisotropy
with no anisotropy within the easy plane. The spontaneous
moment and anisotropy constants in the ground state, Ms =
25.6μB/f.u., K1 = −0.90 MJ m−3, K2 = 0.05 MJ m−3, are
practically the same as in Y2Fe14Si3. The K1(T ) dependence
follows equation (3) as well. Moreover, very similar results
were also obtained on Lu2Fe14Si3 with non-magnetic Lu
(the hexagonal structure with considerably smaller lattice
parameters, a = 8.361 Å, c = 8.295 Å due to the smaller
atomic radius of Lu) [19].

Thus, to a good approximation, R2Fe14Si3 with non-
magnetic R can be regarded as single-sublattice ferromagnets
with magnetic anisotropy of the easy-plane type, i.e. they
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Figure 3. Magnetization isotherms in steady fields applied along the
principal axes of a Nd2Fe14Si3 single crystal at 2 and 160 K.

can be treated without taking into account four individual Fe
sublattices. The magnetic properties of all such compounds are
rather similar, irrespective of structure modifications, different
atomic radii or effective valence of R.

3.2. Anisotropy constants of Nd2Fe14Si3 as obtained by the
Sucksmith–Thompson method

Figure 3 displays magnetization curves along the principal axes
of the Nd2Fe14Si3 single crystal at a low temperature (2 K)
and at a representative elevated temperature of 160 K. The
curves reveal large magnetic anisotropy of an easy-plane type
with the b-axis as the easy-magnetization direction, which is
qualitatively the same as in Nd2Fe17. Details of the temperature
evolution of the magnetization curves along the c-axis and
within the basal plane are presented in figures 4 and 5,
respectively. Nd2Fe14Si3 is ferromagnetic below TC = 495 K
and Ms = 32.3μB/f.u. in the ground state. The magnetic
moment per Nd atom, obtained from the difference between
Ms of Nd2Fe14Si3 and Y2Fe14Si3, is MNd = 3.2μB, which is
close to the moment of the single Nd3+-ion.

Above 120 K, the c-axis curves are practically linear
(which indicates a good quality of the crystal) and they saturate
in a continuous fashion below the maximum available field of
14 T. Therefore, we applied the Sucksmith–Thompson method
to determine the anisotropy constants of the compound.
Generally the method cannot be used for ferromagnets with
the rhombohedral Th2Zn17 structure, even if the six-order
anisotropy terms are small. The reason is an extra fourth-order
term appearing in the expression for the anisotropy energy
appropriate for the symmetry class D3d,

Ea = K1 sin2 θ + K2 sin4 θ + K ′
2 sin3 θ cos θ sin 3ϕ

+ K3 sin6 θ + K ′
3 sin3 θ cos θ(11 cos2 θ − 3) sin 3ϕ

+ K ′′
3 sin6 θ cos 6ϕ. (4)

Figure 4. Temperature evolution of the magnetization curve along
the c-axis of Nd2Fe14Si3.

The x-axis (a) has been set along a two-fold symmetry axis, as
recommended by the International Tables for Crystallography.
Hence the use of sin 3ϕ in equation (4) instead of the more
usual cos 3ϕ. There are six easy-magnetization directions
oriented as follows: ϕ = −π/6 + nπ/3, θ = π/2 +
(−1)nδ, n = 1, 2, . . . , 6. Similar non-coplanar easy-star
structures have already been observed in the isomorphous
Nd2Co17 and Pr2Co17 compounds, with δ = 8◦ and 26◦,
respectively [20, 21].

The peculiarity of Nd2Fe14Si3 is that the deviation of the
easy directions from the basal plane is rather small, δ ≈ 3◦
at T = 4.2 K, as determined from the initial part of the
magnetization curve along the c-axis, figure 4. The angle
δ decreases with temperature, becoming indiscernible above
250 K (figure 6). For δ small, one has

δ = K ′
2 − 3K ′

3

2K1 + 4K2 + 6(K3 − K ′′
3 )

. (5)

In a situation when the sixth-order anisotropy constants
can be neglected, the smallness of δ provides grounds
for neglecting K ′

2 as well. Left with the first two
anisotropy terms in equation (4), we were able to use
the Sucksmith–Thompson technique to determine K1 and
K2. The results are presented in figure 7. The
agreement between the values of the anisotropy constants
K1 and K2 derived from the steady-field and pulsed-field
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Figure 5. Temperature evolution of the magnetization curves along
the a and b axes of Nd2Fe14Si3.

magnetization is quite satisfactory, the latter values being
slightly (about 10%) larger than the values obtained in steady
fields. The somewhat larger pulsed-field values (empty
symbols in figure 7) can be considered as more reliable
because, at lower fields, the influence on the magnetization of
imperfectness of crystal or misorientation is relatively larger
than in the higher pulsed fields. In the ground state, Nd2Fe14Si3

is characterized by K1 = −15 MJ m−3. This splits between
K1Nd = −14 MJ m−3 (−260 K/f.u.) and K1Fe = −1 MJ m−3,
i.e. |K1Nd| � |K1Fe|. The second anisotropy constant, K2 =
2 MJ m−3, can be attributed entirely to the Nd sublattice,
because K2Fe is only 0.04 MJ m−3.

The obtained values of K1Nd and K2Nd look reasonable,
but if we compare K1Nd(T ) with MNd(T ), the observed K1Nd

decreases much faster with temperature than expected from
equation (3). The derived temperature dependence of K1Nd

poses some doubt on the applicability of the Sucksmith–
Thompson method to the c-axis magnetization curve of
Nd2Fe14Si3 at low temperatures. This is also demonstrated
when we consider the magnetization curves along the principal
axes at 4.2 K in higher fields up to 52 T (figure 8).
The occurrence of a FOMP transition around 20 T in the
magnetization along the c-axis cannot be accounted for by a
positive value of K2 as obtained in the Sucksmith–Thompson
analysis.

Figure 6. Temperature dependence of the angle δ between Ms and
the b-axis.

Figure 7. Temperature dependence of K1 and K2 of Nd2Fe14Si3,
obtained by the Sucksmith–Thompson method from magnetization
curves in steady fields up to 14 T. The open symbols correspond to
results of measurements in pulsed fields below FOMP. The triangles
represent K1(T ) of Y2Fe14Si3 (the Fe sublattice).

The six-fold anisotropy constant K ′′
3 describing the

anisotropy within the easy plane is equal to 1.9 MJ m−3

(35 K/f.u.) at 2 K and very rapidly decreases with increasing
temperature (figure 5). (Since K ′′

3 is proportional to the
relatively small area between the magnetization curves along
the a and b axes, the experimental error is about 30%.)

5
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Figure 8. Magnetization curves along the principal axes of
Nd2Fe14Si3, measured in pulsed fields at 4.2 K.

3.3. The two-sublattice model

In section 3.2 Nd2Fe14Si3 was regarded as a one-sublattice
ferromagnet. The physical approximation underlying the
notion of perfectly parallel Fe and Nd sublattices—that of
an Fe–Nd exchange much stronger than the anisotropy—
apparently fails for Nd2Fe14Si3. A manifestation of this failure
was our inability to describe the magnetization curve along the
c-axis, which features a FOMP, using a single set of anisotropy
constants. In this section we refine our approach by allowing
for two non-collinear magnetic sublattices—a single combined
Fe sublattice and a sublattice of Nd. We consider the following
(non-equilibrium) thermodynamic potential:

�(MFe, MNd, B) = −λMFe · MNd

− (MFe + MNd) · B + EFe
a + ENd

a . (6)

Here the first term describes the Fe–Nd exchange, while
the second one describes the interaction with the applied
magnetic field. The last two terms are anisotropy energies
of the two sublattices. Our consideration is limited to low
temperatures, so we assume |MFe| = MFe = const. and
|MNd| = MNd = const.

A specific description of the magnetization process
depends on the direction of the applied magnetic field. We
shall consider in detail the simplest case, B||[001] (c-axis). In
the case of Nd2Fe14Si3 (easy direction close to [120]) the three
vectors, MFe, MNd and B, will lie in one of the {110} planes.
The orientation of MFe and MNd can be described by the angles
they make with B, α and β , respectively. The thermodynamic
potential takes the following form:

�(α, β) = −λMFe MNd cos(α − β) − MFe B cos α

− MNd B cos β + K1Nd sin2 β + K2Nd sin4 β. (7)

The last terms stand for the anisotropy energy of the Nd
sublattice. The anisotropy energy of the Fe sublattice is much
smaller and has been left out. The equilibrium orientation of
the sublattice vectors is found by minimizing equation (7) with
respect to α and β . To this end it is convenient to introduce
dimensionless variables. Let us express all the energies in
the units of λM2

Fe; thus φ = �/λM2
Fe is the dimensionless

thermodynamic potential and κ1 = K1Nd/λM2
Fe < 0 and

κ2 = K2Nd/λM2
Fe < 0 are dimensionless anisotropy constants.

The magnetic field should be related to the molecular field on
the R sublattice, b = B/λMFe. Finally, all magnetizations
are referred to the larger one of the sublattice magnetizations,
which is MFe. According to this convention, the magnetization
of the iron sublattice is unity, while that of the rare-earth
sublattice equals m = MNd/MFe, 0 � m � 1. Using the
dimensionless variables, the thermodynamic potential (7) is
rewritten as follows:

φ(α, β) = −m cos(α − β) − b cos α − mb cos β

+ κ1 sin2 β + κ2 sin4 β. (8)

The reduced total magnetization in the direction of the applied
magnetic field is given by

σ = cos α + m cos β

1 + m
(9)

where α and β are the equilibrium values of the sublattice
orientation angles, obtained by minimizing equation (8). Since
the minimization cannot be carried out analytically, we shall
proceed as follows. First, equation (8) is minimized with
respect to α, which results in

m sin(α − β) + b sin α = 0 (10)

or

α = arctan
m sin β

b + m cos β
. (11)

This expression can be used to eliminate α from the
minimization procedure. Now the function φ(α(β), β) needs
to be minimized with respect to just one variable β . This is
carried out by trial and error, taking for β , values between 0
and π/2 in increments of 0.001.

Our goal is to find the unknown parameters κ1 and κ2

corresponding to the experimentally observed shape of the low-
temperature magnetization curve of Nd2Fe14Si3 with B||[001].
Note that the parameter m is known: m = 6.5/26 = 0.25.
To facilitate the comparison of the shape of the curves with
different κ1 and κ2, it is convenient to bring all the curves to the
same scale. To this end, the computed reduced magnetization
is plotted against a rescaled abscissa, b/bFOMP or B/BFOMP,
see figure 9. The curves to compare then lie within the unitary
square.

Further, we are only interested in such curves whose
critical reduced magnetization corresponds to the value
observed experimentally, σcr = 0.77. This restriction defines a
curve in the plane of the parameters κ1 and κ2, figure 10. (The
construction of this curve is straightforward: for each chosen
κ2, κ1 is varied until the condition σcr = 0.77 is fulfilled.)
Some representative σ(B/BFOMP) dependences are displayed

6
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Figure 9. Reduced magnetization versus reduced magnetic field
applied along the c-axis. Bold line: experimental data upon
deducting the projection of the spontaneous magnetization. Thin
lines: calculations using κ2 indicated on the curves and κ1

determined from the condition σcr = 0.77.

in figure 9. One can appreciate that both the magnitude, and
the sign of the curvature, change according as the locus of the
point (κ1, κ2) moves along the line drawn in figure 10.

In the weakly anisotropic limit, when (κ1, κ2) lies near
the origin in figure 10, the magnetization isotherms are
curved upwards. Here the non-collinearity of the sublattices
can be neglected and the system is equivalent to a single-
sublattice ferromagnet. The presence of a FOMP requires
that κ2 < 0, which then means an upward curvature for
the magnetization. One could use the Sucksmith–Thompson
technique to determine the anisotropy constants in this region.
We note that the initial slope of the curve in figure 10 is
determined by the critical magnetization σcr alone and equals
(1 + σcr)

−1(3σcr − 1)−1 ≈ 0.43, cf. equation (7) of [12].
According as the point (κ1, κ2) moves away from the

origin in figure 10, the field dependences of magnetization
gradually acquire a downward curvature, even though κ2

remains negative. The line in the κ1–κ2 plane deviates from
its initial course, bends over to the right and eventually leaves
the third quadrant for the fourth one. The change of sign
of κ1 is not accompanied by any qualitative change in the
magnetization curves, since no phase transition takes place at
this point. Quantitatively, the gradual growth of the downward
curvature continues as the locus of (κ1, κ2) goes to infinity in
the fourth quadrant.

The best agreement with experiment is obtained for κ1 =
−0.048 and κ2 = −0.045 (second curve from above in
figure 9). This point is indicated with an open circle in
figure 10. The corresponding dimensionless threshold field is
bFOMP = 0.13. Comparing this with the experimental value,

Figure 10. Solid curve: set of points (κ1, κ2) satisfying the condition
σcr = 0.77. Open circle: the best-fit (κ1, κ2) for Nd2Fe14Si3.

BFOMP = 20 T, we get for the molecular field on Nd: Bmol =
λMFe = BFOMP/bFOMP = 154 T. The anisotropy constants of
the Nd sublattice are evaluated as follows: K1Nd = λM2

Feκ1 =
−7 MJ m−3 and K2Nd = λM2

Feκ2 = 6.5 MJ m−3. Since this is
nearly an order of magnitude larger than K1Fe = −1 MJ m−3,
the neglect of the latter in our model is a posteriori justified.

4. Concluding remarks

It is edifying to compare the low-temperature values of
anisotropy constants obtained for Nd2Fe14Si3 in the one- and
two-sublattice models. In the former case we found K1 =
−15 MJ m−3 and K2 = 2 MJ m−3. These values were
deduced by the Sucksmith–Thompson technique from the low-
field (μ0 H < 18 T) part of the magnetization curve along the
c-axis. Both K1 and K2 are attributable predominantly to the
Nd sublattice (even though it is of no great importance how
the anisotropy is apportioned among the sublattices assumed
collinear). It is essential, however, that the observed FOPM
cannot be reproduced in this approach.

Having allowed for non-collinearity of the Nd and Fe
sublattices, we got very different anisotropy constants: K1 =
−7 MJ m−3 and K2 = −6.5 MJ m−3. In order to
keep the model simple, we had made a not unreasonable
assumption that both anisotropy constants pertain to the Nd
sublattice, while the Fe sublattice is magnetically isotropic.
Within this approach that FOMP is described rather well.
Hence we conclude that the single-sublattice approximation is
unapplicable to Nd2Fe14Si3. The anisotropy constants obtained
in that approximation are wrong.

It is an old news that the single-sublattice approximation
may fail despite the smallness of the anisotropy-to-
(intersublattice) exchange ratio [22]. In order for the
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approximation to be valid, this ratio should not just be
small as compared with unity but very small. In our study
we, too, find that the single-sublattice approximation holds
rather well for κ1 ∼ −0.01, but fails irreparably for κ1 ∼
−0.05. The difficulty of deciding whether the single-sublattice
approximation may be used is exacerbated by the fact that the
anisotropy-to-exchange ratio is not known a priori with any
degree of precision.

More telling than any other parameters is the curvature
of the pre-FOMP part of the magnetization versus field
dependence. The magnetization curve that features a type-
I FOMP and is curved upwards on approach to the anomaly
should be tractable within the single-sublattice approximation.
Such FOMPs usually take place in relatively weak fields.
Typical examples are U2Fe13.6Si3.4 [23] and Tb2Fe17 [12] with
BFOMP ∼ 3 T.

If M versus H has a downward curvature on approach
to a type-I FOMP, non-collinearity of the sublattices must be
taken into account. These are usually higher-field FOMPs. A
paradigm is NdCo5 with BFOMP = 34 T [24]. The system
studied in this work falls under this category as well.

Unfortunately, we cannot quantitatively compare the
results on Nd2Fe14Si3 (our work) and on Nd2Fe17 (from
literature), and thus distinguish the effect of Si substitution,
because the data reported on Nd2Fe17 have been obtained
on an imperfect crystal and are not very reliable. However,
the paper is not particularly devoted to studying the effect
of Si substitution on the magnetism of Nd2Fe17 but rather to
the behavior of Nd ions in a high-Fe-content matrix. The
complicated metallurgy of Nd2Fe17 does not allow us to
prepare a single crystal of proper quality and we found that Si
substitution is a way to avoid this difficulty. Because we have
prepared analogous single crystals with non-magnetic R, we
can properly distinguish the Nd contribution to the magnetic
properties.
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